
Geometry and Tonal Music:
A Mathematical and Musical Analogy in Microtonal Systems

by

Alison Marie McClay

Honors Thesis

Appalachian State University

Submitted to the Department of Mathematical Sciences
and The Honors College

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May 2014

Approved by:

Vicky Klima, Ph.D., Thesis Director,
Mathematical Sciences Honors Director

Gabriel Fankhauser, Ph.D., Second Reader

Leslie Sargent Jones, Ph.D., Director, The Honors College



Geometry and Tonal Music:
A Mathematical and Musical Analogy

in Microtonal Systems

Alison McClay

Abstract

Using Brian J. McCartins “Prelude to Musical Geometry” as a guide, we will
look at the geometric link between mathematics and tonal music. When a collection
of pitches is heard, either successively (melodically) or simultaneously (harmoni-
cally), forming scales or chords, we find varying intervallic relationships. One of
our main goals in investigating this musical link is to understand the mathematical
implications of the interval relationships among the members of any set of pitches
and systems. Arranging the pitches of an n-tone system in a circle of pitches similar
to a clock, we are able to plot the pitches of a chord on our musical clock to see
the geometric distances, or semitones, between each note. These pitches are joined
together by line segments, forming a polygon that we then try to rotate (trans-
pose) and/or reflect (invert). From what is known about the 12-tone system, we
hope to see the same geometric and mathematical representation in a 20-tone and
then other general n-tone systems. We ultimately hope to find analogies between
different n-tone systems the applications of the same geometric and mathematical
representations in order to see which, if any, microtonal systems preserve the same
chordal structure and properties present in the 12-tone system that makes up the
musical world we know.
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1 Introduction

“Musical form is close to mathematics–not perhaps to mathematics itself, but certainly

to something like mathematical thinking and relationship.”

–Igor Stravinsky, 1882-1971 [1]

From the time Pythagoras investigated the laws of the vibrating string in sixth century

BC, mathematicians have been fascinated by the subtle relations, analogies, and connec-

tions that exist between music and math [1]. While the ancient Chinese, Egyptians and

Mesopotamians are know for their studies of the mathematical principles of sound, the

Pythagoreans of ancient Greece were the first researchers to investigate the expression

of musical scales in terms of numerical ratios [2], [3]. It’s believed that Pythagoreans’

central doctrine was that “all nature consists of harmony arising out of numbers” [4].

Harmonic and rhythmic music continued to be investigated through physics and math-

ematics as theorists and mathematicians tried to bridge the gap between the two related

fields. As the relationship between composing and hearing music has been investigated

by mathematicians and musicians alike, musical applications of set theory, abstract al-

gebra, number theory, the golden ratio, and Fibonacci numbers have occurred. With the

creation of the computer and its many capabilities, new doors of modeling and making

music were opened as was the possibility of exploring alternative microtonal systems of

octave division [5].

1.1 Microtonal Music

Microtonal music as a whole has a broad history, and these n-tone systems and their

“rules” are distinct to the culture and country from which they come. It is well-known

and accepted that most of the musical instruments of the western world’s orchestra are

constrained to produce 12 distinct pitch classes, with each pitch occurring once per octave.

While Western music is based on this 12-tone (12 equal temperament) system, other
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cultures developed different systems; Persian music divides octaves into 24 quarter tones

(24 equal temperament), Arabic music uses a 16-tone system (16 equal temperament),

and the Chinese use a different form of the 12-tone system (12 equal temperament) [6].

The 12-tone system which makes up the western musical world we know consists of

12 “equally spaced” pitches

{C, C]/D[, D, D]/E[, E, F , F ]/G[, G, G]/A[, A, A]/B[, B}.

We number these pitches as 0, 1, 2, 3, ..., 11 in order to model the 12-tone system and as a

means of organizing pitch relationships. “The basic principle of the keyboard is that any

key that is twelve half steps [the interval between any two adjacent keys] above another

key produces a pitch whose frequency is exactly double that of the lower key. To the ear,

these two sounds seem related, and they are defined as being one octave apart” [7]. On a

keyboard, each new octave begins with 0 (or C) and, in our model, is mathematically the

same as any other C that could be played. However, musically, middle C does not have

the same frequency as high C, low C, or any C in between, but the sounds are highly

related and to simplify our model, we will call all C’s the same. We treat any two notes

that differ by an octave as equivalent, as the corresponding numbers are equivalent and

the notes (while having distinct pitches) sound enough alike for us to consider them in

the same “pitch class.” In the 12-tone system, seven of the pitches, {A,B,C,D,E, F,G},

are designated as natural notes, represented by the white keys on the keyboard of a pi-

ano or organ. The remaining five notes make up the black keys on the keyboard, which

musically are our sharps and flats {C]/D[, D]/E[, F ]/G[, G]/A[, A]/B[}.

Piano keyboards–our musical instrument of choice–are typically tuned in equal tem-

perament where any two adjacent keys, regardless of whether they are a white or black

key, are at the same musical distance from one another and this distance, or interval,

between each note is called a half-step, or semitone [8]. Thus, the distance between each

white and black key on our keyboard, as well as the distance between E (4) and F (5),
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Figure 1: The 12-tone system on a piano keyboard.

is the same; this distance being equal to one semitone apart.

These 12 pitches or tones can be arranged in a circle of pitches similar to a clock, with

the pitch C being labeled 0 instead of 12. We use the group Z12 as our model for the

pitch classes so adding semitones to our musical clock makes use of arithmetic modulo

12 (mod 12). The Cayley Diagram of Z12 with generator 1 gives a visual model of the

pitch-classes and their relationships. The diagram, or clock, is connected by stepping 1

semitone around the entire clock and then mod 12. Using this musical clock, we are able

to see the geometric representations of chords, scales, et cetera and visualize the musical

distances, or semitones, between each note.
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Figure 2: 12-tone musical clock
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2 Twelve vs. Twenty: Diatonic Scale

One of the challenges we faced when looking into other microtonal systems was whether

the structure, behaviors, and properties of the 12-tone system could hold true in other

n-tone microtonal systems, such as Z20.

2.1 Circle of Fifths

To people with any music theory background, the circle of fifths, depicted below, is a

familiar image.
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Figure 3: Circle of Fifths for 12-tone system.

The circle of fifths derives its name from the fact that, if we proceed clockwise around

the clock, each successive key is obtained by transposing the previous key up by a perfect

fifth [8]. Musicians refer to a seven-semitone step, the musical interval between notes

consisting of five lines or spaces on the musical staff, as a fifth. As you move clockwise

within the circle of fifths, you add 7 semitones and each point on the clock is 7 semitones
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apart from its neighboring note. Thus in the circle of fifths we are viewing, Z12 as the

cyclic group generated by 7 mod 12, and the circle of fourths is generated by 5, which can

be seen if you move counterclockwise on figure 3 above. In music theory, a (standard)

diatonic scale is a seven-note scale comprising of two types of intervals–whole steps and

half steps, with the half steps maximally separated [9]. This connects mathematically to

the idea that scales are obtained from a root and chain of six successive fifths rescaled in

an octave [9], i.e. a connected region of 7 in the Cayley graph of Z12 = 〈7〉. Highlighted

in figure 3 above is the C major diatonic scale, the key signature that has no flats or

sharps. If we wanted to transpose or go to a G major, we would simply rotate the blue

shading on the above figure clockwise by one fifth, dropping the F and picking up the

F ].

Additionally, an important property of the 12-tone system is that it maintains an F to

F ] property, which means that every time we move clockwise one step around the circle of

fifths, we drop a note and the note picked up is exactly one semitone higher than the one

we dropped [5]. This implies closeness in key rather than pitches when moving around

the circle, thus grouping the white (natural) and black (sharp and flat) keys together in

interconnected regions. The C-major diatonic scale tells us exactly which notes are the

white keys and which are the black. Highlighted in figure 3, the blue shaded region in

the Z12 circle of fifths represents the white keys on the keyboard, a connected region of

7, and the white region of the circle represents the black keys. Thus, to introduce a new

keyboard for an n-tone system, we need to find the C-major diatonic scale.

When creating an n-tone keyboard for n ≥ 12 that has musical properties similar to

the 12-tone Western music system, we have decided to require

1. a tritone, i.e. a half-way point or note. This implies that n must be

even.

2. that the number of white keys, i.e. the number of notes in our diatonic

scales must be greater than and as close to half the number of notes as
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possible (we would like to have more white keys than black).

3. the diatonic scales possess the F to F ] property.

These musical considerations lead to the following mathematical requirements listed

below.

1. If we have a tritone, we know n is even, so n = 2t for some integer t ≥ 6.

2. Let k be the number of notes in our diatonic scale the Zn = 〈k〉. This is only

possible if gcd(n, k) = 1. If n is a multiple of 4 (n = 4t for some t ≥ 3), we can

have exactly one more white key than black (k = 2t + 1) because

1 = (4t)(t) + (2t + 1)(−2t + 1)

= gcd(4t, 2t + 1).

If n = 4t + 2, we cannot have exactly one more white key than half because

4t + 2

2
+ 1 = 2t + 2 which is clearly not relatively prime to 4t+2. However, we can

have two more than half the keys be white because if k =
4t + 2

2
+ 2 = 2t + 3,

gcd(n, k) = gcd(4t + 2, 2t + 3)

= gcd(2t + 1, 2t + 3), and

2 = (2t + 3)(1) + (2t + 1)(−1)

gcd(2t + 1, 2t + 3) ≤ 2

gcd(2t + 1, 2t + 3) 6= 2, (because 2t + 3 is odd)

gcd(4t + 2, 2t + 3) = gcd(2t + 1, 2t + 3) = 1

Therefore, if n = 4t, then k = 2t + 1 and if n = 4t + 2, k = 2t + 3.

3. If our n-tone, Zn = k system possesses the F to F ] property, we require k2− 0 = 1

as illustrated in the following diagram.
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Figure 4: F to F ] Property: k2 − 0 = 1 mod n

If n = 4t, k = 2t + 1 and the F to F ] property holds true as k2 = (2t + 1)2

mod 4t = 4t2 + 4t+ 1 mod 4t = 1. However, if n = 4t+ 2, so k = 2t+ 3, the F to

F ] property is not possessed.

k2 mod 4t + 2 = (2t + 3)2 mod 4t + 2

= 4t2 + 6t + 9 mod 4t + 2

= t(4t + 2) + 2(4t + 2) + (2t + 5) mod 4t + 2

= 2t + 5 mod 4t + 2

= 2t + 5 (because t > 1)

6= 1
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These mathematical consequences lead to the following theorem.

Theorem 1. In a microtonal musical system with an even number of semitones, n with

diatonic scales consisting of k > n
2

semitones, if k− n
2

is at a minimum and the diatonic

scales possess the F to F ] property, then n = 4t for some integer t and k = 2t + 1.

Thus for the 12-tone system, our theorem says that k = 7, which gives us the diatonic

scale we are familiar with. For a 16-tone system, we would chose a 9 note diatonic scale,

and for a 20-tone system, we would choose an 11 note diatonic scale, and so on and so

forth. However, we will show later that for a 16-tone system, the chordal structure is

dissimilar from Z12, thus we begin looking at a 20-tone system.

2.1.1 Balzano and Zweifel and 20-tone “Circle of Fifths”

Balzano and Zweifel, two musicians who were particularly interested in microtonal sys-

tems expanded what was known about the 12-tone system in regards to a 20-tone and

other n-tone systems. While both discussed the case of Z20 in a similar nature, each

musician made different decisions on how to define the diatonic scale for this system.

Balzano believed the diatonic scale should be made up of 9 notes, while Zweifel chose an

11-tone scale. Both Balzano and Zweifel made solid arguments and cases for their scale

choices, but it seems that an 11-tone scale makes more sense when looking at parallels

between Z12 and Z20, as indicated in our previous discussion. Choosing 11 as our gen-

eralized circle of fifths, or more specifically our circle of ninths generator, leaves 9 to be

our other complimenting generator since −11 = 9 in Z20. 〈1, 3, 9, 11, 17, 19〉 generate Z20.

Zweifel was able to form a generalized circle of fifths for the 20-tone system by taking a

connected region of 11 starting two rotations back from C and calling that the C-Major

scale. Our system is generated using a modification of Zweifel’s 11-tone diatonic scale as

seen in the figure below.

Using this C-major diatonic scale, we are able to create a 20-tone keyboard. This

keyboard has the same look and “feel” of the 12-tone standard keyboard, with adjacent
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Figure 5: Circle of Ninths for 20-tone system.

white keys occurring in structurally similar places from the modified diatonic scale Taylor

Askew developed [11].
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Figure 6: 20-tone Keyboard.

The 20-tone system has eleven white keys and nine black keys (complimenting the gen-

erators 9 and 11) similar to how the 12-tone system (figure 1) has seven white keys and

5 black keys (with generators 5 and 7) [10].
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3 Chord Structure

Arranging the pitches of an n-tone system in a circle of pitches similar to a clock, we are

able to plot the pitches of a chord on our musical clock to see the geometric distances, or

number of semitones, between each note in the chord. These pitches are joined together

with line segments, forming a polygon, a visual representation of any given chord.

A 12-tone major scale is made up of a major third (4 semitones) followed by a minor

third (3 semitones). These step-sizes have mathematical significance, as 4 + 3 = 7, our

generator for the circle of fifths. Splitting the 12-tone diatonic scale into two pieces, we

get pieces of length 4 and 3–the major and minor third. The remaining length of the

polygon is made up by the number of semitones equivalent to the complimenting gener-

ator; for the 12-tone system, this means the final piece of the polygon is a separation 5

semitones. We can see this chord representation in figure 7 below.
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Figure 7: C Major Chord in 12-tone system

C and E are 4 semitones apart, E and G are separated by 3 semitones, and the dis-

tance from G to the next C (given that all notes one octave apart are mathematically

equivalent) is a length of 5 semitones.
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For the 20-tone system, we wanted to be able to see and represent the same thing,

splitting the 11 generator into pieces of length 6 and 5. These two lengths form our

generalized major and minor “thirds,” or more specifically our major and minor fourths,

in our 20-tone system.

0 1
2

3

4

5

6

7

8
9

19

1011
12

13

14

15

16

17

18

C
C]

D

D]

E

F

F]

G

G]

H
I[

I

J [

J

K[

K

A[

A

B[

B

Figure 8: C Major Chord in 20-tone system

Like the 12-tone representation of the C Major chord, we see that the lengths between

C and E are the longer piece length, separated by 6 semitones, and E and G are 5 semi-

tones apart; these two lengths sum to 11, the circle of ninths generator for this system.

The distance between G and C is 9 semitones, the complimentary 20-tone generator.

By mathematically rotating and reflecting–or musically transposing and translating–we

are able to generate all possible major (rotations only) and minor (reflection followed by

rotation) chords for a system. This rotation and reflection property holds true for both

microtonal systems.
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3.1 Cayley Diagrams with Multiple Generators

Another way to interpret major and minor chords are Cayley diagrams in which we

choose multiple generators, one for the major step and one for the minor. Through these

diagrams, we are able to see all the notes as they appear in C-major diatonic (white notes)

scale. Furthermore, defining the diatonic scale in this 11-tone way distinguishes our chord

structures and represented Cayley diagrams as distinct and different than those chord

diagrams generated by Balzano and Zweifel. For Z20, our major triad, or “third,” can

be defined by the root, the note 6 semitones following that, then the note 5 semitones

following that note [11]. The minor triad is the inversion of the major, meaning it is

comprised of the root, 5 semitones following, and 6 semitones following that. Balzano

and Zweifel both represented Z20 in a Cayley Diagram generated by the triadic steps.

Our Cayley Diagram is different than previous ones because we made a major triad a M4

(Major Fourth made up of 6 semitones) and a m4 (minor fourth made up of 5 semitones),

which parallels the 12-tone system’s major triad of M3 (Major Third of 4 semitones) and

m3 (minor third of 3 semitones) [11]. This means that the C-Major tonic triad is 0, 6,

11. Because of this method of defining our triads, our generators for Z20 are 5 and 6. A

Balzano diagram of this group would be generated by 4 and 5 since the direct product

(4 ∗ 5) makes up the group (20), but since 5 and 6 are relatively prime to 20, they still

generate all of Z20. The only difference between our Z20 graph (generated by Z20 = 〈5, 6〉)

and Balzano’s graph generated by Z20 = 〈4, 5〉 is that rather than having this be a nice

unfolded torus, figure 9 is an unfolded twisted torus–it’s more of a Krisy Kreme cruller

than the hot-and-fresh standard glazed doughnut torus. Every 0 in the graph is the

same one, but in order to “glue” the (0′s, 1′s, ...., 14′s) back together to form a torus, it

requires a twist to adapt to the change in generators [11]. We chose to create our own

Cayley diagram rather than continue with Balzano’s graph because our diatonic scale

more closely mirrors the properties of the Z12 diatonic scale as Zweifel showed that the

nine-tone Z20 scale presented by Balzano is more like the Z12 pentatonic scale (the scale

14



produced by generator 3 in the 12-tone system or 9 in the 20-tone system) in structure

[10].
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Figure 9: Z20 Torus with C Major/Minor Chords

The above Cayley Diagram provides us with a nice visual way to see how these major

and minor chords relate. As we were able to see in the circle of fifths transform for Z20

(figure 5), a major scale is any connected region of eleven. We can see that C Major

(0, 6, 11) is highlighted in orange and generated by taking 6 steps (or semitones) down

and then an additional step of size 5. What’s more, we can see that we are able to get

every note (or number) present in the C-major diatonic scale (i.e. every natural key) by

following the major chords in the diagram without repeating any notes by taking steps

of size 6 then 5. This saw-toothed process of stepping shows the full process so that we
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could glue the ends back together three-dimensionally (0 to 0, 14 to 14, etcetera) in order

to form a doughnut, or torus. However, for our Z20 graph, this torus is twisted. Likewise,

all notes are passed through and minor chords are generated by taking the inverse of the

steps, 5 then 6. C Minor (0, 5, 11), highlighted in blue, is generated by taking a step of

size 5 followed by an additional step of 6 semitones.

As mentioned earlier, the Z16 system does uphold the chordal structure of both the

12-tone system and our 20-tone system. As illustrated in the Cayley Diagram below

(figure 10), the path the major chords trace on the twisted torus intersects itself, which

means the structure would fall back on itself before encompassing all of the natural notes,

forming a pretzel of sorts. We can see where issues arise with figure 10’s highlighted 2

and 6. As we can see in the Z16 major chord progression (highlighted in orange), 2 is

not the end of any chord, yet it is still repeated like it is. This repeat leaves two chords

that should be very different relatively similar as they share the same note 2, causing the

chord path to intersect itself. The same can be said with the 6 note in regards to Z16

minor chords (highlighted in blue). Because major and minor chords are key in Western

music composition, this difference was unacceptable to us.
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Figure 10: Z16 Torus with C Major/Minor Chords

We started with 20-tones because it had been investigated somewhat by previous

scholarly research and held the same mathematical and musical qualities, properties,

and similarities we can see with the 12-tone system. We knew that we needed an even

system so we could maintain the tritone element, thus our n required a halfway point.

Additionally, we knew the “circle of fifths” generator should be larger than that halfway

point and as close as possible to the tritone. When we began comparing chord structures

on the 12- and 20-tone systems, we found similarities in shape, semitone distance, gener-

ators, and Cayley Diagrams. Knowing all of these things mirrored what was seen in the

12-tone system, we were hopeful our 20-tone system could uphold and demonstrate fur-

ther similarities and properties as we continued our investigation into the mathematical

and musical analogy in microtonal systems between geometry and tonal music.
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4 Interval Vectors and All-Interval Chords

As explained by Brian McCartin [12], a chord to contain n distinct pitches and thus have

(
n

2

)
=

n(n− 1)

2

pairs of pitches. These n distinct pitches are played simultaneously to produce a chord.

As we investigated earlier when looking at similarities between chord structure in 12-

and 20-tone systems, “each pair can be pictured as an edge or a diagonal of the chord

polygon, and the interval between them is the number of hours, from 1 to 6, separating

them on the musical clock [12].” 6 was chosen for the 12-tone system because within the

chord representation on the 12-tone musical clock, the separation of each pair of notes

in the chord can have up to 6 intervals (since 6 pairs of pitches = 12 tones and 6 is the

maximal distance separating any two tones in the clock). This can be mimicked for the

20-tone system as we’ll later see.

Knowing this, we can create a vector, the chord’s interval vector, whose entries record

how many pairs of pitches in the chord are separated by 1 semitone, how many by 2

semitones, et cetera. The most important thing to take away from this is that chord’s

interval vector reveals how many pitches will be unchanged by a given transposition

[12]. Looking back at figure 7, we see that the interval vector for the C major triad is

〈0, 0, 1, 1, 1, 0〉, since this chord has one pair of pitches separated by each of 3, 4, and 5

semitones, and no pairs at other intervals [12]. It should be noted that these semitone

separations can be both internal (as shown by the dashed lines in figure 11 to come)–

those distances within the circle connecting two pitches not adjacent to each other–and

external (as shown by the solid lines in figure 11 to come)–the interval distances created

by the tones and their external placement on the musical clock.
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4.1 All-Interval Chords

An all-interval chord is a chord containing six pairs of pitches separated by the six

different intervals, so with the interval vector 〈1, 1, 1, 1, 1, 1〉 [12]. To be an all-interval

chord, all possible interval distances must be represented and pairs are the same interval

distance apart. In the 12-tone system this is represented by all-interval chords with two

pitches that are 1 semitone apart, two pitches that are 2 semitones apart, and so on and

so forth to two pitches that are 6 semitones apart.

Using a little algebra, we can determine that the number of distinct pitches in a

12-tone all-interval chord from McCartin’s chord definition/equation.

6 =
(n)(n− 1)

2

12 = n2 − n

0 = n2 − n− 12

0 = (n + 3)(n− 4)

We determine that the number of notes in a 12-tone all-interval chord can either be −3

or 4, thus the solution to this equation and number of pitches in an all-interval chord is

n = 4. This can be checked by

(
4

2

)
=

4(4− 1)

2
=

4(3)

2
=

12

2
= 6

thus the 6 pairs of pitches in the chord all are separated by different intervals and our

chords can contain up to 4 tones. Using this same logic and order, we test this for the 1

to 10 interval in the 20-tone system, knowing we need to end up with 10 pairs of pitches
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if we are to have an all-interval chord with interval vector 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉.

10 =
n(n− 1)

2

20 = n2 − n

0 = n2 − n− 20

0 = (n + 4)(n− 5)

So if this equation and logic holds true, we should see all-interval chords containing five

pitches in a 20-tone system.

In Prelude to Musical Geometry [12], Brian McCartin offers a detailed geometric ar-

gument showing that up to transposition/inversion, the only all-interval chords in the

12-tone system are the tetrachords P1 =
{
B,C,D, F ]

}
and P2 =

{
C,C], E, F ]

}
as seen

in figure 11.
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Figure 11: All-interval chords in the 12-tone system
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Given the many parallels of the 12-tone system we’ve already seen mirrored in our

20-tone system, we were hopeful that we could extend McCartin’s geometric proof and

find and list the all-interval chords for a 20-tone system. However, we actually found

that no such all-interval chords existed.

Theorem 2. There are no all-interval chords in the 20-tone system.

Proof. Let P be any chord with interval vector 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉. Thus,

P contains one pair of pitches separated by a “tritone” of our 20-tone system;

this length-10 “tritone” may appear as either a diagonal or an edge of the

associated pitch polygon. From this interval vector, we know that all lengths

are distinct and present in the pentagon, meaning we need edges of length

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The external edges make a simple closed path inside

the circle. Since the circle is of length 20, the path must be as well, thus the

sides must sum to 20.

In determining the sides, 10 has to be either interior or exterior. Suppose

first length 10 appears as an exterior length of P . By rotating the clock face,

we can arrange this length to join positions 0 and 10. Because 10 is exterior,

the remaining four sides must sum to 10 to close the polygon. But the only

possible partition of 10 that fulfills these claims and splits the partition into

four distinct terms is {1, 2, 3, 4}. However, this cannot occur as placing these

lengths next to each other will result in multiple internal lengths of the same

distance: If 1 was placed next to 2 (as shown by the dashed line in figure 12

below), there would be an internal length of 3. Similarly, 1 cannot be placed

next to 3 as there would now be an interior length of 4. Thus, 1 must be

placed next to 4, but then 2 and 3 are also adjacent, leaving two internal

lengths of 5.

Now we know the length 10 must be interior as shown in the figures below.
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Figure 12: Interior Length-10

The length 5 edge cannot be adjacent to the length 10 edge because this

would create a second length 5 edge joining the two.
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Suppose that 5 is an external edge. Because it cannot be adjacent to the

length 10 edge, it must appear as in figure 13.

If a = 1 and b = 9 ({1, 9}), then {c, e} = {2, 3}. However, e 6= 2 because

the internal length a + e + 5 = 8 is equivalent to another repeating internal

length of 8 (c + 5 = 8). Additionally e 6= 3 because a + e + 5 = 9 = b. We

can rule out all the other possible partitions in a similar way. Therefore, the

length 5 edge must be interior.
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{a, b} = {1, 9}, {2, 8}, {3, 7}, {4, 6}
c + e = 5

{c, e} = {1, 4}, {2, 3}

Figure 13: Length 10 interior, length 5 exterior

Since the length 5 edge cannot be exterior, it must be interior. In addition,

because the length 5 edge cannot be adjacent to the length 10 edge, the length

5 edge must intersect the length 10 edge as shown in figure 14.
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5

10

a + b + c + d + e = 20

a + b = 5

a + e = 10

Figure 14: Lengths 10 and 5 intersect

Thus, {a, e} is one of our partitions summing to 10. This means {c, d} must

partition 10− b, where b is completely determined by our choice of a and e.
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For example, look at {a, e} = {2, 8}, so b = 3 and

c + d = 7

{c, d} = {1, 6}, {2, 5}, {3, 4}

For the partition {c, d} = {1, 6}, if c = 1 and d = 6, then d + e = 6 + 8 = 14

so the interior length 20 − 14 = 6, but d = 6. If c = 6 and d = 1, then

d+ e = 9 and c+ b = 9. The same logic can be applied for the other possible

combinations partitions of 10 listed in figure 13.

Thus, after trying all possible arrangements of our pentagon, we found that

there are no all-interval vectors, 〈1, 1, 1, 1, 1, 1, 1, 1, 1, 1〉, for the 20-tone sys-

tem.

5 Conclusion

For Z20, we found many parallels between the 12- and 20-tone systems. Similarities

occurred in (diatonic) chord diagrams, upholding the tritone and F to F ] properties,

plotting major and minor chords on our musical clocks and Cayley Diagrams, and the

presence of a doughnut-like torus on the Z20 torus (figure 9). However, when investigating

interval vectors and all-interval chords in the 20-tone system, we found that there are no

all-interval chords for Z20. This difference between Z12 and Z20 is the first demonstrated

difference between our two systems, which raises the question of is the all-interval chord

theorem always going to hold true for other microtonal systems? Now we’re looking into

generalizing what we’ve found in the 12- and 20-tone systems for other n-tone systems

to see if all-interval chords exist in these microtonal systems.

While the majority of our research focused on diatonic scales (namely C-major), it

would be interesting to try to find similarites and differences between our two systems–
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Z12 and Z20–with minor and diminished chords. Once we have that knowledge, we should

be able to investigate and find the similarities that exist between minor, diminished, and

other chords across various microtonal systems.

Lastly, a major question that has been raised in numerous papers and scholarly re-

search surrounds Z16 and why it doesn’t “work.” Is there something about n = 12 and

n = 20 that make their chord structures so alike that doesn’t ring true for odd toned

systems or n = 16? Does this trend continue for other n-tone systems and are there

specific conditions for generalizing these microtonal systems? Why doesn’t n = 16 work

and is there something significant about it crossing that causes the discontinuity? Are

these differences in major and minor chord structure as represented in the Cayley dia-

grams always going to cause a difference in torus and system structure? What about the

structure of Z16 makes its torus resemble a pretzel rather than having more of a doughnut

shape? Many people, including ourselves, have voiced both similarities and differences

between Z16 and other systems, but no real conclusions have come about beyond the

difference in chord structure and the presence of a cross (figure 10).
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